scientist preparing magnetic maesurements

Magnetic Properties Research Team

Electron Spin Resonance Group

Head: Dr. V. Kataev

Learn more

Nuclear Magnetic Resonance Group

Head: Dr. H.-J. Grafe

Learn more

Thermodynamics Group

Head: Dr. A. Wolter-Giraud

Learn more

In a coherent experimental effort that combines thermodynamic methods  (magnetization, specific heat and thermal expansion), high field electron spin resonance and nuclear magnetic resonance spectroscopies we investigate magnetic and electronic properties of materials with strong electronic correlations. These are complex transition metal oxides, iron pnictides and other related compounds where quantum entanglement of spins, orbitals and charges gives rise to novel quantum ground states and exotic spin excitations. Our main goal is to obtain fundamental insights into the properties of emerging unconventional spin phases in low-dimensional and frustrated quantum magnets, to examine their low-energy spin dynamics as well as to explore the interplay between magnetism and superconductivity in unconventional high-temperature superconductors.

Research Topics

In many insulating transition metal oxides (TMO) interacting localized electron spins form low-dimensional (low-D) networks, such as spin chains, spin ladders or spin planes of different symmetry. The spatial spin confinement boosts the role of fluctuations. Of strong importance for the fluctuations is also the smallness of the magnetic spin quantum number of the constituting spins, where the strongest quantum nature is present for S=1/2 systems. The characteristic of such low-dimensional quantum spin systems are novel ground states and spin excitations which can radically differ from those known for classical magnets. Besides (or in addition to) the reduction of the spin dimensionality, strong frustration of the exchange interactions in the spin lattice due to its specific topology or competing interactions inhibits long-range spin order and yields a huge degeneracy of the ground states. Under certain conditions novel states, such as quantum spin liquids, magnetic monopole excitations and other exotic phenomena may arise. A coupling of an electron spin to the orbital degrees of freedom opens a plethora of new phenomena in quantum spin systems. In particular, very recently a novel kind of spin-orbital Mott insulators on the basis of iridium oxides has been proposed, where an unusual insulating or conducting behavior is controlled by both Coulomb repulsion and the strength of the spin-orbit coupling. The primary objective of our work in this research topic is to search for new magnetic phenomena in complex TMO and to provide important insights for the verification and development of fundamental models of low-D and frustrated quantum magnets.

The iron pnictide family of superconductors, with transition temperatures as high as 55 K, became the second family of materials capable of achieving high Tc, ending the monopoly of the cuprates in this field. The pnictides are similar to the cuprates in that both families are quasi-2d layered compounds with having an antiferromagnetically ordered ground state in the undoped parent compounds. With doping, the magnetic ordering is suppressed and superconductivity emerges. However, the two families are quite different as well. The pnictides have a multiband electronic structure as opposed to the single band physics of the cuprates. Furthermore, the undoped parent compounds of pnictides are metallic instead of Mott insulators as in the case of the cuprates. For sure, a comparison and contrast between the pnictides and cuprates will help to better understand high Tc superconductivity by identifying the common necessary contributing ingredients. One important issue in the field is e.g. whether the magnetism in the pnictides is driven by local moment physics like it is the case for the cuprates or by itinerant physics as well as to better understand the interplay between the magnetic properties and superconductivity in both iron pnictide and cuprate compounds.

In the recent past the field of molecular magnetism has experienced an enor­mous growth both because of the discovery of new magnetic quantum phenom­ena of a fundamental physical interest, but also because of recognizing a potentially great impact of this field for the emerging technologies of information storage, spin elec­tronics, and quantum computation. Synthesis and magnetic characterization of mole­cules with steadily increasing number of paramagnetic transition metal ions in the molecule’s core has yielded the discovery of a number of Single Molecule Mag­nets, i.e. molecules possessing stable and large magnetic moments with siz­able magnetic anisotropy of a pure molecular origin regardless the state of aggrega­tion. Here we focus on the determination of the electronic ground state, magnetic anisotropy, the low-energy spectrum of the spin states and spin dynamics which is crucial for the understanding of correlations between the chemical composition, bonding geometry and magnetic properties of polynuclear metal organic complexes and consequently for a targeted design of the molecules with specific magnetic functionalities. 

Nuclear Magnetic Resonance (NMR) is a powerful local probe technique for investigating the properties of Li ion battery materials. In LiMnPO4, we have shown by comparing the NMR spectra of two different nuclei, 7Li and 31P, that disorder in the Mn sublattice leads to the relatively poor electrochemical properties of this material. Our results are perfectly consistent with a recent theoretical study which found a formation of a vacancy-polaron complex owing to lattice distortion. In SiCN, we could successfully determine the activation energy EA and the correlation time 0 of the Li ion hopping process from temperature dependent 7Li linewidth and spin lattice relaxation rate measurements. From the NMR spectra, we find evidence that the carbon phases are the major electrochemically active sites for Li storage. 

Thermodynamics group

The applied thermodynamic methods at the IFF comprise high-resolution magnetometry, dilatometry and calorimetry at low temperatures (3He and 4He temperatures), high magnetic fields (up to 18 T) and high pressures (up to 6 GPa) in order to study the magnetic and thermodynamic properties of strongly correlated electron systems. In addition to the AC and DC magnetization as well as the specific heat, thermal expansion and magnetostriction measurements give us the opportunity to evaluate not only the temperature but also the pressure dependence of the entropy, which in turn gives information on the pressure dependence of the magnetic transition temperature Tc (TN). In this context, a unique low-background hydrostatic pressure-cell up to ~6 GPa serves as an additional tool to experimentally determine the pressure dependence of the magnetization. Particular focus is given to quantum magnets with reduced dimensionality, frustration and the interplay of spin, charge, structure and orbitals in complex transition metal oxide systems as well as on novel FeAs superconductors.

Group Leader: Dr. Anja Wolter-Giraud

Phone: +49 351 4659 619


Group Members

Kranthi Kumar Bestha

Dr. Laura Teresa Corredor Bohórquez 

Sebastian Gass

Dr. Vilmos Kocsis 

Börge Mehlhorn

Bastian Rubrecht

Manaswini Sahoo

Francesco Scaravaggi



2020 - G. Bastien, B. Rubrecht, E. Haeussler, P. Schlender, Z. Zangeneh, S. Avdoshenko, R. Sarkar, A. Alfonsov, S. Luther, Y. A. Onykiienko, H. C. Walker, H. Kühne, V. Grinenko, Z. Guguchia, V. Kataev, H.-H. Klauss, L. Hozoi, J. van den Brink, D. S. Inosov, B. Büchner,A. U. B. Wolter, T. Doert, Long-range magnetic order in the S=1/2 triangular lattice antiferromagnet KCeS2, SciPost Phys. 9, 041 (2020).

2020 - S. Gass, P. M. Consoli, V. Kocsis, L. T. Corredor, P. Lampen-Kelley, D. G. Mandrus, S. E. Nagler, L. Janssen, M. Vojta, Büchner, and A. U. B. Wolter, Thermodynamic characteristics at the field-induced transitions of the Kitaev system a-RuCl3 probed by thermal expansion and magnetostriction, Phys. Rev. B 101, 245158 (2020).

2019 - Raphael C. Vidal, Alexander Zeugner, Jorge I. Facio, Rajyavardhan Ray, M. Hossein Haghighi, Anja U. B. Wolter, Laura T. Corredor Bohorquez, Federico Caglieris, Simon Moser, Tim Figgemeier, Thiago R. F. Peixoto, Hari Babu Vasili, Manuel Valvidares, Sungwon Jung, Cephise Cacho, Alexey Alfonsov, Kavita Mehlawat, Vladislav Kataev, Christian Hess, Manuel Richter, Bernd Büchner, Jeroen van den Brink, Michael Ruck, Friedrich Reinert, Hendrik Bentmann, and Anna Isaeva, Topological Electronic Structure and Intrinsic Magnetization in MnBi4Te7: A Bi2Te3 Derivative with a Periodic Mn Sublattice, Phys. Rev. X 9, 041065 (2019).

2019 - M.M. Otrokov,I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A.M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A.Yu. Vyazovskaya, S.V. Eremeev, Yu. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. Sanchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C. H. Min, Simon Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, and E.V. Chulkov, Prediction and observation of an antiferromagnetic topological insulator, Nature 576, 416 (2019).

2019 - G. Bastien, M. Roslova, M. H. Haghighi K. Mehlawat, J. Hunger, A. Isaeva, T. Doert, M. Vojta, B. Büchner, A. U. B. Wolter, Spin-glass state and reversed magnetic anisotropy induced by Cr doping in the Kitaev magnet a-RuCl3, Phys. Rev. B 99, 214410 (2019).

2019- L. Heinze, G. Bastien, R. Ryll, J.-U. Hoffmann, M. Reehuis, B. Ouladdiaf, F. Bert, E. Kermarrec, P. Mendels, S. Nishimoto, S.-L. Drechsler, U. K. Rößler, H. Rosner, B. Büchner, A. J. Studer, K. C. Rule, S. Süllow, andA. U. B. Wolter, Magnetic phase diagram of the frustrated spin chain compound linarite PbCuSO4(OH)2 as seen by neutron diffraction and 1H-NMR,Phys. Rev. B 99, 094436 (2019).

2018 - G. Bastien, G. Garbarino, R. Yadav, F. J. Martinez-Casado, R. Beltrán Rodríguez, Q. Stahl, M. Kusch, S. P. Limandri, R. Ray, P. Lampen-Kelley, D. G. Mandrus, S. E. Nagler, M. Roslova, A. Isaeva, T. Doert, L. Hozoi,A. U. B. Wolter, B. Büchner,J. Geck, and J. van den Brink, Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet α-RuCl3, Phys. Rev B 97, 241108(R) (2018).

2017 - A. U. B. Wolter, L. T. Corredor, L. Janssen, K. Nenkov, S. Schönecker, S.-H. Do, K.-Y. Choi, R. Albrecht, J. Hunger, T. Doert, M. Vojta, and B. Büchner, Field-induced quantum criticality in the Kitaev system α−RuCl3, Phys. Rev. B 96, 041405(R) (2017).

2017 - L. T. Corredor, G. Aslan-Cansever, M. Sturza, Kaustuv Manna, A. Maljuk, S. Gass, T. Dey, A. U. B. Wolter, Olga Kataeva, A. Zimmermann, M. Geyer, C. G. F. Blum, S. Wurmehl, and B. Büchner, Iridium double perovskite Sr2YIrO6: A combined structural and specific heat study, Phys. Rev. B 95, 064418 (2017).

2016 - B. Willenberg, M. Schäpers, A. U. B. Wolter, S.-L. Drechsler, M. Reehuis, J.-U. Hoffmann, B. Büchner, A. J. Studer, K. C. Rule, B. Ouladdiaf, S. Süllow, and S. Nishimoto, Complex Field-Induced States in Linarite PbCuSO4(OH)2 with a Variety of High-Order Exotic Spin-Density Wave States,Phys. Rev. Lett. 116, 047202 (2016).



  • Quantum Design SQUID Magnetometer (5 T, 1.5-400 K, Oven (up to 800 K), Rotator, Ultra-Low-field option, Hydrostatic Pressure Cell up to 5 GPa)
  • Vibrating Sample Magnetometer (17 T, 2.5-300 K)
  • Alternating Gradient Magnetometer  MicroMag™ Model 2900 (Princeton Measurement Corp., 4-300 K, 1.2 T, 1 nemu rms)
  • Quantum Design PPMS (9 T, 0.5-350 K; Specific heat, AC-susceptibility, Torque-Magnetometer, Electrical+heat transport, Dilatometer)
  • Quantum Design SQUID-VSM (7 T, 1.8-400 K)
  • Magnetostriction (18 T, 2-300K), Thermal Expansion (18 T, 2-300 K)
  • Hydrostatic Pressure Cell (up to 5 GPa)AC-Susceptibility (AC-Dipstick; 0 T)

In addition to the in-house techniques, in cooperation with our partners we apply the following techniques:

  • Pulsed Field Magnetometer up to 60 T (with J. Wosnitza, FZD Rossendorf)


Nuclear Magnetic Resonance Group

The method Nuclear Magnetic Resonance (NMR) makes use of the hyperfine coupling of the nuclei to their electronic environment to gain information about local magnetic and electronic properties of superconductors, magnetic materials, Li ion battery materials, etc. The nuclei are ideal probes for static as well as dynamic properties since their magnetic moments are tiny compared to the electronic moments, thereby minimizing the influence on the electronic system. In addition, the nuclear quadrupole moment allows for probing the local charge distribution via Nuclear Quadrupole Resonance (NQR). All experiments can be performed in magnetic fields up to 16 Tesla, temperatures from 1.5 to 500 K, and pressures up to 3 GPa.

Phone: +49 351 4659 239


Please contact me if you are interested in conducting a Bachelor, Master, or PhD thesis in our group.


Dr. Hans-Joachim Grafe

Dr. Adam Dioguardi

Piotr Lepucki (PhD student)

Ulrich Peeck (Master student)

2021 - P. Lepucki, A.I. Egunov, M. Rosenkranz, R. Huber, A. Mirhajivarzaneh, D.D. Karnaushenko, A.P. Dioguardi, D. Karnaushenko, B. Büchner, O.G. Schmidt, H. Grafe
Self‐Assembled Rolled‐Up Microcoils for nL Microfluidics NMR Spectroscopy
Advanced Materials Technologies | Volume: 6 | Issue: 1 | P. 2000679/1-10 | URL

2020 - H. Grafe, P. Lepucki, M. Witschel, A. Dioguardi, R. Kappenberger, S. Aswartham, S. Wurmehl, B. Büchner
Unified phase diagram of F-doped LaFeAsO by means of NMR and NQR parameters
Physical Review B | Volume: 101 | Issue: 5 | P. 054519/1-12 | URL

2019 - M. Moroni, G. Prando, S. Aswartham, I. Morozov, Z. Bukowski, B. Büchner, H. Grafe, P. Carretta
Charge and nematic orders in AFe2As2(A=Rb,Cs) superconductors
Physical Review B | Volume: 99 | Issue: 23 | P. 235147/1-7 | URL

2018 - D. Karnaushenko, D. Karnaushenko, H. Grafe, V. Kataev, B. Büchner, O.G. Schmidt
Rolled-Up Self-Assembly of Compact Magnetic Inductors, Transformers, and Resonators
Advanced Electronic Materials | Volume: 4 | Issue: 11 | P. 1800298/1-7 | URL

2017 - H.-J. Grafe, S. Nishimoto, M. Iakovleva, E. Vavilova, L. Spillecke, A. Alfonsov, M.-I. Sturza, S. Wurmehl, H. Nojiri, H. Rosner, J. Richter, U.K. Rößler, S.-L. Drechsler, V. Kataev, B. Buechner
Signatures of a magnetic fieldinduced unconventional nematic liquid in the frustrated and anisotropic spin-chain cuprate LiCuSbO4
Scientific Reports | Volume: 7 | P. 6720/1-16 | URL




  • 3 Tecmag 500 MHz double resonance spektrometer
  • 1 Tecmag LapNMR 0.2 MHz - 125 MHz single resonance spectrometer

Magnets and Cryostats

  • 1 Oxford cryostat (1.5 K - 500 K)
  • 3 Janis cryostats (1.5 K - 325 K)
  • 1 Oxford sweepable 16 T magnet (cold bore, 10 ppm homogeineity)
  • 1 static 7 T magnet (warm bore, 1 ppm homogeneity)
  • 1 sweepable 9.2 T magnet (warm bore, 10 ppm homogeneity)

Leibniz transfer project 2020: "Development of Micro-Resonators for NMR and ESR spectroscopies"

Alexander von Humboldt research group linkage program 2020 (University Zagreb - IFW Dresden)

Deutsche Forschungsgemeinschaft 2014-2017 "Niederenergetische Spinanregungen in dotierten Kuprat-Spinketten"



Electron Spin Resonance Group

Electron spin resonance (ESR), also commonly named electron paramagnetic resonance (EPR), is a powerful spectroscopic tool in experimental condensed matter physics. With this technique one can selectively tune different electron spin ensembles into resonance by exposing the substance to high frequency electromagnetic radiation in the presence of magnetic field. ESR yields valuable information about crystal fields, spin-orbit and spin-spin interactions, spin- and lattice dynamics, spin structures and low-energy excitations in magnetically ordered states. At the IFW Dresden we have developed a cutting edge high frequency high-field electron spin resonance (HF-ESR) instrumentation that enables high-resolution and sensitive spectroscopic measurements over a broad range of control parameters, such as frequency up to 1 THz, magnetic field up to 16 T and temperature down to 1.6 K.

Group Leader: Dr. Vladislav Kataev

Phone: +49 351 4659 328


2021 - A. Alfonsov, J.I. Facio, K. Mehlawat, A.G. Moghaddam, R. Ray, A. Zeugner, M. Richter, J. van den Brink, A. Isaeva, B. Büchner, V. Kataev, "Strongly anisotropic spin dynamics in magnetic topological insulators", Physical Review B | Volume: 103 | Issue: 18 | P. L180403/1-7 | URL

2021 - V. Kataev, "Insights into the Spin–Orbital Entanglement in Complex Iridium Oxides from High-Field ESR Spectroscopy",
Applied Magnetic Resonance (2021), online version: | URL

2021 - T. Sakurai, B. Rubrecht, L.T. Corredor, R. Takehara, M. Yasutani, J. Zeisner, A. Alfonsov, S. Selter, S. Aswartham, A.U.B. Wolter, B. Büchner, H. Ohta, V. Kataev; "Pressure control of the magnetic anisotropy of the quasi-two-dimensional van der Waals ferromagnet Cr2Ge2Te6", Physical Review B | Volume: 103 | Issue: 2 | P. 024404/1-8 | URL

2020 - R. Zaripov, Y. Kandrashkin, K. Salikhov, B. Büchner, F. Liu, M. Rosenkranz, A. Popov, V. Kataev;
"Unusually large hyperfine structure of the electron spin levels in an endohedral dimetallofullerene and its spin coherent properties", Nanoscale | Volume: 12 | Issue: 39 | P. 20513-20521 | URL

2020 - J. Zeisner, K. Mehlawat, A. Alfonsov, M. Roslova, T. Doert, A. Isaeva, B. Büchner, V. Kataev;
"Electron spin resonance and ferromagnetic resonance spectroscopy in the high-field phase of the van der Waals magnet CrCl3", Physical Review Materials | Volume: 4 | Issue: 6 | P. 064406/1-8 | URL

2019 - M. Otrokov, I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. Aliev, S. Gaß, A.U.B. Wolter-Giraud, A. Koroleva, A. Shikin, M. Blanco-Rey, M. Hoffmann, I. Rusinov, A. Vyazovskaya, S. Eremeev, Y. Koroteev, V. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I. Amiraslanov, M. Babanly, N. Mamedov, N. Abdullayev, V. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C. Min, S. Moser, T. Peixoto, F. Reinert, A. Ernst, P. Echenique, A. Isaeva, E. Chulkov;
"Prediction and observation of an antiferromagnetic topological insulator", Nature | Volume: 576 | P. 416–422 | URL

2019 - R. Vidal, A. Zeugner, J. Facio, R. Ray, M.H. Haghighi, A. Wolter-Giraud, L.T. Corredor Bohorquez, F. Caglieris, S. Moser, T. Figgemeier, T. Peixoto, H. Vasili, M. Valvidares, S. Jung, C. Cacho, A. Alfonsov, K. Mehlawat, V. Kataev, C. Heß, M. Richter, B. Büchner, J. van den Brink, M. Ruck, F. Reinert, H. Bentmann, A. Isaeva;
"Topological Electronic Structure and Intrinsic Magnetization in MnBi4Te7: A Bi2Te3 Derivative with a Periodic Mn Sublattice"
Physical Review X | Volume: 9 | Issue: 4 | P. 041065/1-13 | URL

2019 - J. Zeisner, A. Alfonsov, S. Selter, S. Aswartham, M. Ghimire, M. Richter, J. van den Brink, B. Büchner, V. Kataev; 
"Magnetic anisotropy and spin-polarized two-dimensional electron gas in the van der Waals ferromagnet Cr2Ge2Te6",
Physical Review B | Volume: 99 | Issue: 16 | P. 165109/1-14 | URL

2018 - C. Wellm, J. Zeisner, A. Alfonsov, A.U.B. Wolter, M. Roslova, A. Isaeva, T. Doert, M. Vojta, B. Büchner, V. Kataev;
"Signatures of low-energy fractionalized excitations in alpha-RuCl3 from field-dependent microwave absorption",
Physical Review B | Volume: 98 | Issue: 18 | P. 184408/1-6 | URL

2018 - S. Fuchs, T. Dey, G. Aslan-Cansever, A. Maljuk, S. Wurmehl, B. Büchner, V. Kataev; "Unraveling the Nature of Magnetism of the 5d4 Double Perovskite Ba2YIrO6", Physical Review Letters | Volume: 120 | Issue: 23 | P. 237204/1-6| URL


  • Two tunable high-frequency high-magnetic field ESR spectrometers based on the Millimeterwave Vector Network Analyzers and millimeterwave backward oscillators
    • frequency range 10 GHz - 1 THz
    • magnetic fields up to 16 Tesla (up to 11 Tesla with an optical magneto-cryostat)
    • Temperature range 1.6 – 300 K
  • Bruker 10 GHz (X-band) ESR Spectrometer(3.5 K - 300K, field up to 1 T)

"Static and dynamic magnetism of topologically nontrivial magnetic materials" (DFG research project); PI: A. Alfonsov

"New van-der-Waals-bonded magnetic topological insulators and Weyl semimetals"  (research project within Würzburg-Dresden Cluster of Excellence ct.qmat); PI: K. Mehlawat

"Thickness dependent magnetism of (Bi2Te3)n(MnBi2Te4) topological insulators probed by electron spin resonance (ESR)" (research project within Würzburg-Dresden Cluster of Excellence ct.qmat); PI: B. Büchner

"Crystal growth and magnetism of novel low-dimensional van der Waals materials" (DFG research project); PI: V. Kataev and B. Büchner

"Electron spin resonance spectroscopy on complex iridium oxides" (DFG research project - recently accomplished); PI: V. Kataev